
Lepton Frame Capture Module

Table of Contents
1. Overview . 2

1.1. Key Features. 2

2. Architecture . 2

2.1. Frame Buffer Flow . 2

3. Configuration. 2

3.1. Task Configuration . 3

3.2. VSync Configuration. 3

4. API Functions . 3

4.1. Lepton_StartCapture . 3

4.2. Lepton_StopCapture. 4

5. Frame Buffer Structure. 4

5.1. Lepton_FrameBuffer_t. 4

6. Capture Task Implementation. 5

6.1. Task Loop . 5

6.2. Error Recovery . 5

6.3. Sync Error Example . 5

7. VSync Interrupt. 6

7.1. Purpose . 6

7.2. ISR Implementation . 6

7.3. Without VSync . 6

8. Frame Queue Management . 6

8.1. Queue Behavior. 7

8.2. Queue Size Recommendations . 7

9. Performance Optimization. 7

9.1. Task Priority. 7

9.2. Core Affinity. 7

9.3. IRAM Placement . 8

10. Watchdog Integration . 8

11. Telemetry Support . 8

12. Usage Example . 9

12.1. Complete Capture Setup . 9

12.2. Monitoring Performance . 10

13. Troubleshooting . 10

13.1. High Sync Errors. 10

13.2. Missed Frames. 10

13.3. Memory Issues . 11

1

1. Overview
The lepton_capture module implements the frame capture task and synchronization logic for the
Lepton thermal camera. It handles continuous frame acquisition, error recovery, and frame buffer
management.

1.1. Key Features
• FreeRTOS task-based frame capture

• Optional VSync interrupt synchronization

• Automatic sync error recovery

• Frame buffer queue management

• Telemetry data extraction

• Watchdog integration

• Configurable task parameters

2. Architecture
The capture system uses a dedicated FreeRTOS task that continuously:

1. Waits for VSync interrupt (optional)

2. Captures frames via VoSPI

3. Handles synchronization errors

4. Queues frame buffers for processing

5. Manages multiple frame buffers

2.1. Frame Buffer Flow

VSync IRQ → Capture Task → VoSPI Transfer → Frame Buffer → Queue → Application

3. Configuration
The module can be configured via Kconfig options:

14. See Also. 11

15. License . 11

2

3.1. Task Configuration

Option Description Default

CONFIG_LEPTON_CAPTURE_TASK_STACK Stack size in bytes 4096

CONFIG_LEPTON_CAPTURE_TASK_PRIORITY FreeRTOS task priority 16

CONFIG_LEPTON_CAPTURE_TASK_CORE CPU core affinity (0 or 1) 1

CONFIG_LEPTON_CAPTURE_TASK_CORE_AFFIN
ITY

Enable core pinning Defined

3.2. VSync Configuration

Option Description Default

CONFIG_LEPTON_GPIO_USE_VSYNC Enable VSync interrupt Enabled

CONFIG_LEPTON_VSYNC_PLACE_IRAM Place ISR in IRAM for faster execution Enabled

4. API Functions

4.1. Lepton_StartCapture

Lepton_Error_t Lepton_StartCapture(
 Lepton_t *p_Device,
 QueueHandle_t p_Queue
);

Start the frame capture task.

Parameters:

• p_Device: Pointer to Lepton device instance

• p_Queue: FreeRTOS queue handle to receive frame buffers

Returns:

• LEPTON_ERR_OK: Success

• LEPTON_ERR_INVALID_ARG: Invalid parameters

• LEPTON_ERR_NO_MEM: Task or ISR creation failed

Initialization Steps:

1. Create capture task

2. Register VSync interrupt handler (if enabled)

3. Start VoSPI capture

3

4. Mark device as capturing

Example:

// Create queue for 3 frames
QueueHandle_t frame_queue = xQueueCreate(3, sizeof(Lepton_FrameBuffer_t));

if (Lepton_StartCapture(&device, frame_queue) != LEPTON_ERR_OK) {
 ESP_LOGE(TAG, "Failed to start capture");
}

4.2. Lepton_StopCapture

Lepton_Error_t Lepton_StopCapture(Lepton_t *p_Device);

Stop frame capture and clean up resources.

Cleanup Steps:

1. Signal task to stop

2. Remove VSync interrupt handler

3. Stop VoSPI transfer

4. Delete capture task

5. Clear capturing flag

Example:

Lepton_StopCapture(&device);
vQueueDelete(frame_queue);

5. Frame Buffer Structure

5.1. Lepton_FrameBuffer_t

typedef struct {
 uint16_t *Image_Buffer; // Pointer to thermal image data
 uint8_t *Telemetry_Buffer; // Pointer to telemetry (or NULL)
 uint16_t Width; // Image width (160)
 uint16_t Height; // Image height (120)
 uint8_t BytesPerPixel; // Bytes per pixel (2 for RAW14)
} Lepton_FrameBuffer_t;

4

Fields:

• Image_Buffer: Thermal image data (160x120 pixels, 14-bit values)

• Telemetry_Buffer: Optional telemetry data (if enabled)

• Width: Image width (always 160)

• Height: Image height (120 for Lepton 3.x)

• BytesPerPixel: Always 2 for RAW14 format

6. Capture Task Implementation

6.1. Task Loop
The capture task runs continuously:

while (Device->Internal.VoSPI.isCapturing) {
 1. Wait for VSync interrupt (optional)
 2. Capture frame via VoSPI
 3. Handle errors:
 - LEPTON_ERR_OK: Queue frame
 - LEPTON_ERR_FAIL: Log sync error, retry
 - LEPTON_ERR_NOT_FINISHED: Resync in progress
 4. Reset watchdog timer
}

6.2. Error Recovery
The task implements intelligent error recovery:

• Consecutive Errors: Tracks sync errors in a row

• Backoff: Increases delay after errors to reduce CPU load

• Logging: Throttled error logging (every 10th consecutive error)

• Automatic Resync: VoSPI handles resynchronization

6.3. Sync Error Example

if (Error == LEPTON_ERR_FAIL) {
 Device->Internal.VoSPI.SyncErrors++;
 ConsecutiveErrors++;

 if (ConsecutiveErrors % 10 == 1) {
 ESP_LOGW(TAG, "Sync error (consecutive: %d, total: %u)",
 ConsecutiveErrors, Device->Internal.VoSPI.SyncErrors);
 }

5

 vTaskDelay(10 / portTICK_PERIOD_MS); // Backoff
}

7. VSync Interrupt

7.1. Purpose
The VSync signal indicates the start of a new frame. Using it:

• Reduces CPU usage: Task sleeps until frame is ready

• Perfect timing: Captures frames at sensor rate (~8.6 Hz)

• Eliminates polling: No busy-waiting

7.2. ISR Implementation

static void IRAM_ATTR Lepton_VSync_ISR_Handler(void *p_Args)
{
 BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 // Notify capture task
 xTaskNotifyFromISR((TaskHandle_t)p_Args, 0, eNoAction,
 &xHigherPriorityTaskWoken);

 if (xHigherPriorityTaskWoken) {
 portYIELD_FROM_ISR();
 }
}


When CONFIG_LEPTON_VSYNC_PLACE_IRAM is enabled, the ISR is placed in IRAM for
fastest response.

7.3. Without VSync
If VSync is not available:

• Task runs continuously without waiting

• Higher CPU usage due to polling

• May miss frame timing boundaries

8. Frame Queue Management

6

8.1. Queue Behavior
The capture task uses xQueueOverwrite() for frame buffers:

• Latest Frame: Always contains newest data

• No Blocking: Overwrites old frame if not processed

• Single Item Queue: Recommended queue size is 1

Alternative: Use larger queue with xQueueSend() if you need to process every frame.

8.2. Queue Size Recommendations

Queue Size Use Case Behavior

1 Real-time display Always shows latest frame

2-3 Balanced performance Some buffering, low latency

5+ Frame recording Process every frame, higher latency

9. Performance Optimization

9.1. Task Priority
Set priority based on application needs:

• High priority (15-20): Real-time thermal imaging

• Medium priority (10-14): General applications

• Low priority (<10): Background monitoring

9.2. Core Affinity
Pin capture task to dedicated core:

#define CONFIG_LEPTON_CAPTURE_TASK_CORE 1 // Use core 1

Benefits:

• Reduces cache thrashing

• Predictable timing

• Leaves core 0 for other tasks

7

9.3. IRAM Placement
Enable IRAM for VSync ISR:

#define CONFIG_LEPTON_VSYNC_PLACE_IRAM // Place in IRAM

Trade-offs:

• Faster ISR: No flash cache access

• Higher IRAM usage: Uses precious IRAM space

10. Watchdog Integration
The capture task integrates with ESP-IDF watchdog:

esp_task_wdt_add(NULL); // Add current task

while (capturing) {
 esp_task_wdt_reset(); // Reset watchdog every loop
 // ... capture frame ...
}

This prevents watchdog timeout during normal operation.

11. Telemetry Support
When telemetry is enabled, the capture module:

1. Allocates telemetry buffer

2. Extracts telemetry lines from VoSPI stream

3. Provides telemetry pointer in frame buffer

Accessing Telemetry:

Lepton_FrameBuffer_t frame;
xQueueReceive(queue, &frame, portMAX_DELAY);

if (frame.Telemetry_Buffer != NULL) {
 // Parse telemetry data
 // Format: 4 lines × 160 words
}

8

12. Usage Example

12.1. Complete Capture Setup

#include "lepton.h"

static Lepton_t lepton;
static QueueHandle_t frame_queue;

void capture_task(void *arg) {
 Lepton_FrameBuffer_t frame;

 while (true) {
 if (xQueueReceive(frame_queue, &frame, portMAX_DELAY)) {
 ESP_LOGI(TAG, "Frame: %dx%d, %d bytes/pixel",
 frame.Width, frame.Height, frame.BytesPerPixel);

 // Process frame.Image_Buffer here
 // 160x120 pixels, 14-bit per pixel

 // Optional: Check telemetry
 if (frame.Telemetry_Buffer != NULL) {
 // Parse telemetry
 }
 }
 }
}

void app_main(void) {
 // Initialize Lepton
 Lepton_Conf_t config = { /* ... */ };
 Lepton_Init(&lepton, &config, NULL);

 // Create queue (size 1 for real-time)
 frame_queue = xQueueCreate(1, sizeof(Lepton_FrameBuffer_t));

 // Start capture
 if (Lepton_StartCapture(&lepton, frame_queue) != LEPTON_ERR_OK) {
 ESP_LOGE(TAG, "Capture failed");
 return;
 }

 // Create processing task
 xTaskCreatePinnedToCore(capture_task, "capture", 4096, NULL, 10, NULL, 0);
}

9

12.2. Monitoring Performance

void print_stats(Lepton_t *device) {
 int32_t frames = Lepton_GetFrameCounter(device);
 int32_t errors = Lepton_GetSyncErrors(device);

 float error_rate = (errors * 100.0f) / frames;

 ESP_LOGI(TAG, "Frames: %d, Errors: %d (%.2f%%)",
 frames, errors, error_rate);
}

13. Troubleshooting

13.1. High Sync Errors
Symptoms: Many LEPTON_ERR_FAIL errors

Causes:

• Poor SPI connections

• Electrical noise

• Clock speed too high

• Inadequate power supply

Solutions:

• Check wiring and shielding

• Reduce SPI clock speed

• Add decoupling capacitors

• Use shorter cables

13.2. Missed Frames
Symptoms: Frame counter increases slowly

Causes:

• Processing too slow

• VSync not connected

• Task priority too low

Solutions:

10

• Increase task priority

• Connect VSync pin

• Optimize processing code

• Use larger queue

13.3. Memory Issues
Symptoms: LEPTON_ERR_NO_MEM on start

Causes:

• Insufficient heap memory

• Too many frame buffers

• Stack overflow

Solutions:

• Reduce CONFIG_LEPTON_VOSPI_FRAME_BUFFERS

• Increase heap size

• Use PSRAM for buffers

14. See Also
• Main Driver - Initialization and configuration

• VoSPI - Low-level SPI communication

• CCI Commands - Telemetry control

15. License
Copyright © Daniel Kampert, 2026

This program is free software under GNU GPL v3.0.

Website: https://www.kampis-elektroecke.de

11

lepton.html
vospi.html
lepton_cci.html
https://www.kampis-elektroecke.de

	Lepton Frame Capture Module
	Table of Contents
	1. Overview
	1.1. Key Features

	2. Architecture
	2.1. Frame Buffer Flow

	3. Configuration
	3.1. Task Configuration
	3.2. VSync Configuration

	4. API Functions
	4.1. Lepton_StartCapture
	4.2. Lepton_StopCapture

	5. Frame Buffer Structure
	5.1. Lepton_FrameBuffer_t

	6. Capture Task Implementation
	6.1. Task Loop
	6.2. Error Recovery
	6.3. Sync Error Example

	7. VSync Interrupt
	7.1. Purpose
	7.2. ISR Implementation
	7.3. Without VSync

	8. Frame Queue Management
	8.1. Queue Behavior
	8.2. Queue Size Recommendations

	9. Performance Optimization
	9.1. Task Priority
	9.2. Core Affinity
	9.3. IRAM Placement

	10. Watchdog Integration
	11. Telemetry Support
	12. Usage Example
	12.1. Complete Capture Setup
	12.2. Monitoring Performance

	13. Troubleshooting
	13.1. High Sync Errors
	13.2. Missed Frames
	13.3. Memory Issues

	14. See Also
	15. License

