Lepton Main Driver Module
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1. Overview

The lepton module is the core driver interface for FLIR Lepton thermal imaging sensors. It provides
high-level functions for device initialization, configuration, and control.

1.1. Key Features

* Device initialization and deinitialization

* Video format configuration

* Telemetry control

* Temperature reading (FPA and AUX)

* AGC (Automatic Gain Control) configuration

* ROI (Region of Interest) management for multiple features
* Radiometric measurements (Lepton 3.5)

» Frame capture control

* Color palette conversion

1.2. Supported Sensors

The driver automatically detects and supports:

* Lepton 3.0 (500-0726-01) - Non-radiometric
* Lepton 3.5 (500-0771-01) - Radiometric with TLinear



2. Initialization

2.1. Basic Initialization

#include "lepton.h"

Lepton_t device;
Lepton_Result_t status;

Lepton_Conf_t config = {
.CCI = {
.I2C_Read = my_i2c_read_function,
.I2C Write = my_i2c_write_function,
.Address = LEPTON_I2C_ADDRESS

Iy
.VoSPI = {
.Host = SPI2_HOST,
.Interface = {
.clock_speed_hz = 20000000, // 20 MHz
.spics_io_num = GPIO_NUM_10
I
.Master = {
.sclk_io_num = GPIO_NUM_12,
.miso_io_num = GPIO_NUM_13
I
.DMA = SPI_DMA_CH_AUTO
Iy

.VSync = GPIO_NUM_5,
.Reset = &my_reset_function,
.PowerDown = &my_powerdown_function

+

if (Lepton_Init(&device, &config, &status) != LEPTON_ERR_OK) {
ESP_LOGE(TAG, "Failed to initialize Lepton");
+

2.2. Configuration Structure

The Lepton_Conf_t structure contains:

¢ CCI: I12C communication callbacks and address

VoSPI: SPI configuration (host, pins, clock, DMA)

* VSync: GPIO pin for vertical sync interrupt (optional)

Reset: Hardware reset callback (optional)

* PowerDown: Power-down control callback (optional)



3. API Functions

3.1. Device Control

3.1.1. Lepton_Init

Lepton_Error_t Lepton_Init(
Lepton_t *p_Device,
const Lepton_Conf_t *const p_Init,
Lepton_Result_t *p_Status
)i
Initialize the Lepton sensor.

Parameters:

* p_Device: Pointer to device instance
* p_Init: Pointer to configuration structure

» p_Status: Optional pointer to receive status information
Returns: LEPTON_ERR_OK on success
Initialization Sequence:

1. Hardware reset (if callback provided)
. Power-up (if callback provided)

. Wait 950ms for boot

2

3

4. Initialize CCI interface

5. Detect sensor model and capabilities
6

. Configure default settings

3.1.2. Lepton_Deinit
void Lepton_Deinit(Lepton_t *p_Device);

Deinitialize the sensor and free resources.

3.1.3. Lepton_HardReset
void Lepton_HardReset(Lepton_t *p_Device);

Perform hardware reset via external GPIO.



o This function is weak and must be implemented by the application.
3.1.4. Lepton_EnablePowerDown
void Lepton_EnablePowerDown(Lepton_t *p_Device, bool Enable);

Control power-down mode via external GPIO.

o This function is weak and must be implemented by the application.

3.2. Video Configuration

3.2.1. Lepton_SetVideoFormat

Lepton_Error_t Lepton_SetVideoFormat(
Lepton_t *p_Device,
Lepton_VideoFormat_t Format,
Lepton_Result_t *p_Status

)i

Set the video output format.
Formats:

e LEPTON_FORMAT _RAW14: 14-bit raw thermal data
» LEPTON_FORMAT_RGB888: 8-bit RGB (AGC applied)

e Changing format triggers VoSPI resynchronization.
3.2.2. Lepton_GetVideoFormat

Lepton_Error_t Lepton_GetVideoFormat(
Lepton_t *p_Device,
Lepton_VideoFormat_t *p_Format

)
Get the current video format.

3.2.3. Lepton_SetVideoSource

Lepton_Error_t Lepton_SetVideoSource(
Lepton_t *p_Device,
Lepton_VideoSource_t Source,



uint16_t Constant,
Lepton_Result_t *p_Status
K

Set the video source for testing and calibration.

Sources:

LEPTON_SOURCE_RAW: Normal thermal imaging

LEPTON_SOURCE _COOKED: Processed thermal data

LEPTON_SOURCE_CONSTANT: Fixed value for testing

LEPTON_SOURCE_RAMP: Ramp pattern for testing

3.2.4. Lepton_FreezeVideo

Lepton_Error_t Lepton_FreezeVideo(
Lepton_t *p_Device,
bool Freeze,
Lepton_Result_t *p_Status

)i

Freeze/unfreeze video output.

3.3. Telemetry

3.3.1. Lepton_EnableTelemetry

Lepton_Error_t Lepton_EnableTelemetry(
Lepton_t *p_Device,
bool Enable,
Lepton_Result_t *p_Status

)i

Enable/disable telemetry data in video stream. Telemetry includes temperature, status, and
metadata.

3.4. Temperature Measurement

3.4.1. Lepton_GetTemperature

Lepton_Error_t Lepton_GetTemperature(
Lepton_t *p_Device,
uint16_t *p_FPA,
uint16_t *p_AUX,



Lepton_Result_t *p_Status
)i
Read sensor temperatures.
Returns:

* p_FPA: Focal Plane Array temperature (centi-Kelvin)

* p_AUX: Auxiliary temperature (centi-Kelvin)

Conversion:

float celsius = Lepton_KelvinToCelsius(fpa_temp);

3.4.2. Lepton_GetPixelTemperature

Lepton_Error_t Lepton_GetPixelTemperature(
Lepton_t *p_Device,
uint16_t PixelValue,
float *p_Temperature

);

Convert a raw pixel value to temperature in Celsius.

o Only available on radiometric Lepton 3.5 with TLinear enabled.

3.5. AGC Configuration

3.5.1. Lepton_EnableAGC

Lepton_Error_t Lepton_EnableAGC(
Lepton_t *p_Device,
bool Enable,
Lepton_Result_t *p_Status

)i

Enable/disable Automatic Gain Control.

* Enabled: 8-bit contrast-enhanced output

» Disabled: 14-bit raw radiometric data

3.6. ROI Management

The driver supports multiple Region of Interest (ROI) types:



* Spotmeter ROI: Single-point temperature measurement

* Scene ROI: Scene statistics calculation area

AGC ROI: Area for AGC algorithm

» Video Focus ROI: Focus calculation area

3.6.1. Lepton_SetSpotmeterROI / Lepton_GetSpotmeterROI

Lepton_Error_t Lepton_SetSpotmeterROI(
Lepton_t *p_Device,
Lepton_ROI_t *p_ROI,
Lepton_Result_t *p_Status

)i

Configure spotmeter region.

Example:

Lepton_ROI_t roi = {
Start = {.X =70, .Y
.End = {.X = 90, .Y =

= 50}, // Center of 160x120 image
70}

b

Lepton_SetSpotmeterROI(&device, &roi, &status);

3.6.2. Lepton_GetSpotmeter

Lepton_Error_t Lepton_GetSpotmeter(
Lepton_t *p_Device,
Lepton_Spotmeter_t *p_Spot,
Lepton_Result_t *p_Status

)i

Read spotmeter values (temperature, min, max, population).

3.6.3. Scene ROI Functions

* Lepton_SetSceneROI() / Lepton_GetSceneROI()
» Lepton_SetAGCROI() / Lepton_GetAGCROI()
e Lepton_SetVideoFocusROI() / Lepton_GetVideoFocusROI()

3.7. Scene Statistics



3.7.1. Lepton_GetSceneStatistics

Lepton_Error_t Lepton_GetSceneStatistics(
Lepton_t *p_Device,
Lepton_SceneStatistics_t *p_Statistics,
Lepton_Result_t *p_Status

)

Get scene statistics (min, max, average temperature).

3.8. Radiometric Functions (Lepton 3.5 only)

3.8.1. Lepton_SetEmissivity

Lepton_Error_t Lepton_SetEmissivity(
Lepton_t *p_Device,
Lepton_Emissivity_t Emissivity,
Lepton_Result_t *p_Status

)i

Set material emissivity for accurate temperature measurement.
Common Emissivity Values:

¢ Human skin: 0.98
 Water: 0.95
e Concrete: 0.92

* Steel (polished): 0.30

3.8.2. Lepton_SetFluxLinearParameters / Lepton_GetFluxLinearParameters

Lepton_Error_t Lepton_SetFluxLinearParameters(
Lepton_t *p_Device,
Lepton_FluxLinearParams_t *p_Parameters,
Lepton_Result_t *p_Status

)i

Configure flux linear calibration parameters.

3.8.3. Lepton_SetTLinearResolution / Lepton_GetTLinearResolution

Lepton_Error_t Lepton_SetTLinearResolution(
Lepton_t *p_Device,
Lepton_TLinear_Resolution_t Resolution,



Lepton_Result_t *p_Status
)i

Set TLinear temperature resolution mode.

3.9. Frame Capture

3.9.1. Lepton_StartCapture

Lepton_Error_t Lepton_StartCapture(
Lepton_t *p_Device,
QueueHandle_t p_Queue

K

Start frame capture task.
Parameters:

* p_Queue: FreeRTOS queue to receive frame buffers

Queue Item Type:

Lepton_FrameBuffer_t frame;

if (xQueueReceive(queue, &frame, portMAX_DELAY)) {
// Process frame.p_Buffer (160x120 pixels)
// Release when done

3.9.2. Lepton_StopCapture
Lepton_Error_t Lepton_StopCapture(Lepton_t *p_Device);

Stop frame capture and free resources.

3.10. Image Processing

3.10.1. Lepton_Raw14ToRGB

bool Lepton_Raw14ToRGB(
Lepton_t *p_Device,
uint16_t *p_Input,
uint8_t *p_Output,
int16_t *p_Min,
int16_t *p_Max,
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uint16_t Width,
uint16_t Height

)

Convert 14-bit raw thermal data to RGB using iron palette.
Color Mapping:

* Blue - Cyan — Green — Yellow — Red

e Blue = coldest, Red = hottest

Usage:

uint16_t raw[160*120];
uint8_t rgb[160*120%3];
int16_t min, max;

Lepton_Raw14ToRGB(&device, raw, rgb, &min, &max, 160, 120);
ESP_LOGI(TAG, "Temperature range: %d to %d", min, max);

3.11. Utility Functions

3.11.1. Lepton_LibVersion
std::string Lepton_LibVersion(void);

Get library version string (e.g., "1.0.0").

3.11.2. Lepton_GetUptime

uint32_t Lepton_GetUptime(
Lepton_t *p_Device,
Lepton_Result_t *p_Status
K

Get sensor uptime in milliseconds.

3.11.3. Lepton_isCapturing
bool Lepton_isCapturing(Lepton_t *p_Device);

Check if capture is active.
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3.11.4. Lepton_GetSyncErrors
int32_t Lepton_GetSyncErrors(Lepton_t *p_Device);

Get VoSPI synchronization error count.

3.11.5. Lepton_GetFrameCounter
int32_t Lepton_GetFrameCounter(Lepton_t *p_Device);

Get number of successfully captured frames.
3.11.6. Lepton_KelvinToCelsius

float Lepton_KelvinToCelsius(uint32_t Kelvin);

Convert centi-Kelvin to Celsius.

Example:

uint16_t fpa_temp;
Lepton_GetTemperature(&device, &fpa_temp, NULL, NULL);
float celsius = Lepton_KelvinToCelsius(fpa_temp);

4. Error Handling

All functions return Lepton_Error_t:

LEPTON_ERR_OK: Success

LEPTON_ERR_INVALID_ARG: Invalid parameter

LEPTON_ERR_TIMEOUT: Communication timeout

LEPTON _ERR_NOT_INITIALIZED: Device not initialized

LEPTON_ERR_NOT_SUPPORTED: Feature not supported

LEPTON_ERR_NO_MEM: Memory allocation failed

The optional Lepton_Result_t provides detailed CCI status codes.

5. Usage Example
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5.1. Complete Initialization and Capture

#include "lepton.h"

static Lepton_t lepton_device;
static QueueHandle_t frame_queue;

void app_main(void) {
// Create frame queue
frame_queue = xQueueCreate(3, sizeof(Lepton_FrameBuffer_t));

// Configure Lepton
Lepton_Conf_t config = {
.CCI = {
.I2C Read = i2c_read_callback,
LI2C Write = i2c_write_callback,
.Address = LEPTON_I2C_ADDRESS

H
.VoSPI = {
.Host = SPI2_HOST,
.Interface = {
.clock_speed_hz = 20000000,
.spics_io_num = GPIO_NUM_10
b
.Master = {
.sclk_io_num = GPIO_NUM_12,
.miso_io_num = GPIO_NUM_13
I
.DMA = SPI_DMA_CH_AUTO
}

.VSync = GPIO_NUM_5
+;

// Initialize

Lepton_Result_t status;

if (Lepton_Init(&lepton_device, &config, &status) != LEPTON_ERR_OK) {
ESP_LOGE(TAG, "Initialization failed");
return;

}

// Configure for radiometric mode
Lepton_EnableAGC(&lepton_device, false, &status);
Lepton_SetEmissivity(&lepton_device, 95, &status); // 0.95 for most surfaces

// Start capture
Lepton_StartCapture(&lepton_device, frame_queue);

// Process frames
Lepton_FrameBuffer_t frame;
while (true) {
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if (xQueueReceive(frame_queue, &frame, portMAX_DELAY)) {
// Convert to RGB
uint8_t rgb[160*120*3];
int16_t min, max;
Lepton_Raw14ToRGB(&lepton_device, frame.p_Buffer,
rgb, &min, &max, 160, 120);

ESP_LOGI(TAG, "Frame captured, temp range: %.1f to %.1f °C",

Lepton_KelvinToCelsius(min),
Lepton_KelvinToCelsius(max));

6. See Also

* CCI Commands - High-level CCI interface
» Frame Capture - Capture implementation details
* CCI Low-Level - Low-level I2C communication

e VoSPI - SPI video interface

7. License

Copyright © Daniel Kampert, 2026
This program is free software under GNU GPL v3.0.

Website: https://www.kampis-elektroecke.de
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