Lepton Main Driver Module

Table of Contents

1. Overview
1.1. Key Features
1.2. Supported Sensors
2. Initialization
2.1. Basic Initialization
2.2. Configuration Structure
3. API Functions
3.1. Device Control
3.1.1. Lepton_Init
3.1.2. Lepton_Deinit
3.1.3. Lepton_HardReset
3.1.4. Lepton_EnablePowerDown
3.2. Video Configuration
3.2.1. Lepton_SetVideoFormat
3.2.2. Lepton_GetVideoFormat
3.2.3. Lepton_SetVideoSource
3.2.4. Lepton_FreezeVideo
3.3. Telemetry
3.3.1. Lepton_EnableTelemetry
3.4. Temperature Measurement
3.4.1. Lepton_GetTemperature
3.4.2. Lepton_GetPixelTemperature
3.5. AGC Configuration
3.5.1. Lepton_EnableAGC
3.6. ROI Management
3.6.1. Lepton_SetSpotmeterROI / Lepton_GetSpotmeterROI
3.6.2. Lepton_GetSpotmeter
3.6.3. Scene ROI Functions
3.7. Scene Statistics
3.7.1. Lepton_GetSceneStatistics
3.8. Radiometric Functions (Lepton 3.5 only)
3.8.1. Lepton_SetEmissivity
3.8.2. Lepton_SetFluxLinearParameters / Lepton_GetFluxLinearParameters

© © © © ©W W 00 0 00 N N N9 9 o o0 oo oo oo y;r U1 a1 U1 U b b bk bR kR LW W WD NN

3.8.3. Lepton_SetTLinearResolution / Lepton_GetTLinearResolution

—
(e}

3.9. Frame Capture

—
(e}

3.9.1. Lepton_StartCapture



3.9.2. Lepton_StopCapture 10

3.10. Image Processing 10
3.10.1. Lepton_Raw14ToRGB 10

3.11. Utility Functions 11
3.11.1. Lepton_LibVersion 11
3.11.2. Lepton_GetUptime 11
3.11.3. Lepton_isCapturing 11
3.11.4. Lepton_GetSyncErrors 12
3.11.5. Lepton_GetFrameCounter 12
3.11.6. Lepton_KelvinToCelsius 12

4. Error Handling 12
5. Usage Example 12
5.1. Complete Initialization and Capture 13

6. See Also 14
7. License 14

1. Overview

The lepton module is the core driver interface for FLIR Lepton thermal imaging sensors. It provides
high-level functions for device initialization, configuration, and control.

1.1. Key Features

* Device initialization and deinitialization

* Video format configuration

* Telemetry control

* Temperature reading (FPA and AUX)

* AGC (Automatic Gain Control) configuration

* ROI (Region of Interest) management for multiple features
* Radiometric measurements (Lepton 3.5)

» Frame capture control

* Color palette conversion

1.2. Supported Sensors

The driver automatically detects and supports:

* Lepton 3.0 (500-0726-01) - Non-radiometric
* Lepton 3.5 (500-0771-01) - Radiometric with TLinear



2. Initialization

2.1. Basic Initialization

#include "lepton.h"

Lepton_t device;
Lepton_Result_t status;

Lepton_Conf_t config = {
.CCI = {
.I2C_Read = my_i2c_read_function,
.I2C Write = my_i2c_write_function,
.Address = LEPTON_I2C_ADDRESS

Iy
.VoSPI = {
.Host = SPI2_HOST,
.Interface = {
.clock_speed_hz = 20000000, // 20 MHz
.spics_io_num = GPIO_NUM_10
I
.Master = {
.sclk_io_num = GPIO_NUM_12,
.miso_io_num = GPIO_NUM_13
I
.DMA = SPI_DMA_CH_AUTO
Iy

.VSync = GPIO_NUM_5,
.Reset = &my_reset_function,
.PowerDown = &my_powerdown_function

+

if (Lepton_Init(&device, &config, &status) != LEPTON_ERR_OK) {
ESP_LOGE(TAG, "Failed to initialize Lepton");
+

2.2. Configuration Structure

The Lepton_Conf_t structure contains:

¢ CCI: I12C communication callbacks and address

VoSPI: SPI configuration (host, pins, clock, DMA)

* VSync: GPIO pin for vertical sync interrupt (optional)

Reset: Hardware reset callback (optional)

* PowerDown: Power-down control callback (optional)



3. API Functions

3.1. Device Control

3.1.1. Lepton_Init

Lepton_Error_t Lepton_Init(
Lepton_t *p_Device,
const Lepton_Conf_t *const p_Init,
Lepton_Result_t *p_Status
)i
Initialize the Lepton sensor.

Parameters:

* p_Device: Pointer to device instance
* p_Init: Pointer to configuration structure

» p_Status: Optional pointer to receive status information
Returns: LEPTON_ERR_OK on success
Initialization Sequence:

1. Hardware reset (if callback provided)
. Power-up (if callback provided)

. Wait 950ms for boot

2

3

4. Initialize CCI interface

5. Detect sensor model and capabilities
6

. Configure default settings

3.1.2. Lepton_Deinit
void Lepton_Deinit(Lepton_t *p_Device);

Deinitialize the sensor and free resources.

3.1.3. Lepton_HardReset
void Lepton_HardReset(Lepton_t *p_Device);

Perform hardware reset via external GPIO.



o This function is weak and must be implemented by the application.
3.1.4. Lepton_EnablePowerDown
void Lepton_EnablePowerDown(Lepton_t *p_Device, bool Enable);

Control power-down mode via external GPIO.

o This function is weak and must be implemented by the application.

3.2. Video Configuration

3.2.1. Lepton_SetVideoFormat

Lepton_Error_t Lepton_SetVideoFormat(
Lepton_t *p_Device,
Lepton_VideoFormat_t Format,
Lepton_Result_t *p_Status

)i

Set the video output format.
Formats:

e LEPTON_FORMAT _RAW14: 14-bit raw thermal data
» LEPTON_FORMAT_RGB888: 8-bit RGB (AGC applied)

e Changing format triggers VoSPI resynchronization.
3.2.2. Lepton_GetVideoFormat

Lepton_Error_t Lepton_GetVideoFormat(
Lepton_t *p_Device,
Lepton_VideoFormat_t *p_Format

)
Get the current video format.

3.2.3. Lepton_SetVideoSource

Lepton_Error_t Lepton_SetVideoSource(
Lepton_t *p_Device,
Lepton_VideoSource_t Source,



uint16_t Constant,
Lepton_Result_t *p_Status
K

Set the video source for testing and calibration.

Sources:

LEPTON_SOURCE_RAW: Normal thermal imaging

LEPTON_SOURCE _COOKED: Processed thermal data

LEPTON_SOURCE_CONSTANT: Fixed value for testing

LEPTON_SOURCE_RAMP: Ramp pattern for testing

3.2.4. Lepton_FreezeVideo

Lepton_Error_t Lepton_FreezeVideo(
Lepton_t *p_Device,
bool Freeze,
Lepton_Result_t *p_Status

)i

Freeze/unfreeze video output.

3.3. Telemetry

3.3.1. Lepton_EnableTelemetry

Lepton_Error_t Lepton_EnableTelemetry(
Lepton_t *p_Device,
bool Enable,
Lepton_Result_t *p_Status

)i

Enable/disable telemetry data in video stream. Telemetry includes temperature, status, and
metadata.

3.4. Temperature Measurement

3.4.1. Lepton_GetTemperature

Lepton_Error_t Lepton_GetTemperature(
Lepton_t *p_Device,
uint16_t *p_FPA,
uint16_t *p_AUX,



Lepton_Result_t *p_Status
)i
Read sensor temperatures.
Returns:

* p_FPA: Focal Plane Array temperature (centi-Kelvin)

* p_AUX: Auxiliary temperature (centi-Kelvin)

Conversion:

float celsius = Lepton_KelvinToCelsius(fpa_temp);

3.4.2. Lepton_GetPixelTemperature

Lepton_Error_t Lepton_GetPixelTemperature(
Lepton_t *p_Device,
uint16_t PixelValue,
float *p_Temperature

);

Convert a raw pixel value to temperature in Celsius.

o Only available on radiometric Lepton 3.5 with TLinear enabled.

3.5. AGC Configuration

3.5.1. Lepton_EnableAGC

Lepton_Error_t Lepton_EnableAGC(
Lepton_t *p_Device,
bool Enable,
Lepton_Result_t *p_Status

)i

Enable/disable Automatic Gain Control.

* Enabled: 8-bit contrast-enhanced output

» Disabled: 14-bit raw radiometric data

3.6. ROI Management

The driver supports multiple Region of Interest (ROI) types:



* Spotmeter ROI: Single-point temperature measurement

* Scene ROI: Scene statistics calculation area

AGC ROI: Area for AGC algorithm

» Video Focus ROI: Focus calculation area

3.6.1. Lepton_SetSpotmeterROI / Lepton_GetSpotmeterROI

Lepton_Error_t Lepton_SetSpotmeterROI(
Lepton_t *p_Device,
Lepton_ROI_t *p_ROI,
Lepton_Result_t *p_Status

)i

Configure spotmeter region.

Example:

Lepton_ROI_t roi = {
Start = {.X =70, .Y
.End = {.X = 90, .Y =

= 50}, // Center of 160x120 image
70}

b

Lepton_SetSpotmeterROI(&device, &roi, &status);

3.6.2. Lepton_GetSpotmeter

Lepton_Error_t Lepton_GetSpotmeter(
Lepton_t *p_Device,
Lepton_Spotmeter_t *p_Spot,
Lepton_Result_t *p_Status

)i

Read spotmeter values (temperature, min, max, population).

3.6.3. Scene ROI Functions

* Lepton_SetSceneROI() / Lepton_GetSceneROI()
» Lepton_SetAGCROI() / Lepton_GetAGCROI()
e Lepton_SetVideoFocusROI() / Lepton_GetVideoFocusROI()

3.7. Scene Statistics



3.7.1. Lepton_GetSceneStatistics

Lepton_Error_t Lepton_GetSceneStatistics(
Lepton_t *p_Device,
Lepton_SceneStatistics_t *p_Statistics,
Lepton_Result_t *p_Status

)

Get scene statistics (min, max, average temperature).

3.8. Radiometric Functions (Lepton 3.5 only)

3.8.1. Lepton_SetEmissivity

Lepton_Error_t Lepton_SetEmissivity(
Lepton_t *p_Device,
Lepton_Emissivity_t Emissivity,
Lepton_Result_t *p_Status

)i

Set material emissivity for accurate temperature measurement.
Common Emissivity Values:

¢ Human skin: 0.98
 Water: 0.95
e Concrete: 0.92

* Steel (polished): 0.30

3.8.2. Lepton_SetFluxLinearParameters / Lepton_GetFluxLinearParameters

Lepton_Error_t Lepton_SetFluxLinearParameters(
Lepton_t *p_Device,
Lepton_FluxLinearParams_t *p_Parameters,
Lepton_Result_t *p_Status

)i

Configure flux linear calibration parameters.

3.8.3. Lepton_SetTLinearResolution / Lepton_GetTLinearResolution

Lepton_Error_t Lepton_SetTLinearResolution(
Lepton_t *p_Device,
Lepton_TLinear_Resolution_t Resolution,



Lepton_Result_t *p_Status
)i

Set TLinear temperature resolution mode.

3.9. Frame Capture

3.9.1. Lepton_StartCapture

Lepton_Error_t Lepton_StartCapture(
Lepton_t *p_Device,
QueueHandle_t p_Queue

K

Start frame capture task.
Parameters:

* p_Queue: FreeRTOS queue to receive frame buffers

Queue Item Type:

Lepton_FrameBuffer_t frame;

if (xQueueReceive(queue, &frame, portMAX_DELAY)) {
// Process frame.p_Buffer (160x120 pixels)
// Release when done

3.9.2. Lepton_StopCapture
Lepton_Error_t Lepton_StopCapture(Lepton_t *p_Device);

Stop frame capture and free resources.

3.10. Image Processing

3.10.1. Lepton_Raw14ToRGB

bool Lepton_Raw14ToRGB(
Lepton_t *p_Device,
uint16_t *p_Input,
uint8_t *p_Output,
int16_t *p_Min,
int16_t *p_Max,

10



uint16_t Width,
uint16_t Height

)

Convert 14-bit raw thermal data to RGB using iron palette.
Color Mapping:

* Blue - Cyan — Green — Yellow — Red

e Blue = coldest, Red = hottest

Usage:

uint16_t raw[160*120];
uint8_t rgb[160*120%3];
int16_t min, max;

Lepton_Raw14ToRGB(&device, raw, rgb, &min, &max, 160, 120);
ESP_LOGI(TAG, "Temperature range: %d to %d", min, max);

3.11. Utility Functions

3.11.1. Lepton_LibVersion
std::string Lepton_LibVersion(void);

Get library version string (e.g., "1.0.0").

3.11.2. Lepton_GetUptime

uint32_t Lepton_GetUptime(
Lepton_t *p_Device,
Lepton_Result_t *p_Status
K

Get sensor uptime in milliseconds.

3.11.3. Lepton_isCapturing
bool Lepton_isCapturing(Lepton_t *p_Device);

Check if capture is active.

11



3.11.4. Lepton_GetSyncErrors
int32_t Lepton_GetSyncErrors(Lepton_t *p_Device);

Get VoSPI synchronization error count.

3.11.5. Lepton_GetFrameCounter
int32_t Lepton_GetFrameCounter(Lepton_t *p_Device);

Get number of successfully captured frames.
3.11.6. Lepton_KelvinToCelsius

float Lepton_KelvinToCelsius(uint32_t Kelvin);

Convert centi-Kelvin to Celsius.

Example:

uint16_t fpa_temp;
Lepton_GetTemperature(&device, &fpa_temp, NULL, NULL);
float celsius = Lepton_KelvinToCelsius(fpa_temp);

4. Error Handling

All functions return Lepton_Error_t:

LEPTON_ERR_OK: Success

LEPTON_ERR_INVALID_ARG: Invalid parameter

LEPTON_ERR_TIMEOUT: Communication timeout

LEPTON _ERR_NOT_INITIALIZED: Device not initialized

LEPTON_ERR_NOT_SUPPORTED: Feature not supported

LEPTON_ERR_NO_MEM: Memory allocation failed

The optional Lepton_Result_t provides detailed CCI status codes.

5. Usage Example

12



5.1. Complete Initialization and Capture

#include "lepton.h"

static Lepton_t lepton_device;
static QueueHandle_t frame_queue;

void app_main(void) {
// Create frame queue
frame_queue = xQueueCreate(3, sizeof(Lepton_FrameBuffer_t));

// Configure Lepton
Lepton_Conf_t config = {
.CCI = {
.I2C Read = i2c_read_callback,
LI2C Write = i2c_write_callback,
.Address = LEPTON_I2C_ADDRESS

H
.VoSPI = {
.Host = SPI2_HOST,
.Interface = {
.clock_speed_hz = 20000000,
.spics_io_num = GPIO_NUM_10
b
.Master = {
.sclk_io_num = GPIO_NUM_12,
.miso_io_num = GPIO_NUM_13
I
.DMA = SPI_DMA_CH_AUTO
}

.VSync = GPIO_NUM_5
+;

// Initialize

Lepton_Result_t status;

if (Lepton_Init(&lepton_device, &config, &status) != LEPTON_ERR_OK) {
ESP_LOGE(TAG, "Initialization failed");
return;

}

// Configure for radiometric mode
Lepton_EnableAGC(&lepton_device, false, &status);
Lepton_SetEmissivity(&lepton_device, 95, &status); // 0.95 for most surfaces

// Start capture
Lepton_StartCapture(&lepton_device, frame_queue);

// Process frames
Lepton_FrameBuffer_t frame;
while (true) {

13



if (xQueueReceive(frame_queue, &frame, portMAX_DELAY)) {
// Convert to RGB
uint8_t rgb[160*120*3];
int16_t min, max;
Lepton_Raw14ToRGB(&lepton_device, frame.p_Buffer,
rgb, &min, &max, 160, 120);

ESP_LOGI(TAG, "Frame captured, temp range: %.1f to %.1f °C",

Lepton_KelvinToCelsius(min),
Lepton_KelvinToCelsius(max));

6. See Also

* CCI Commands - High-level CCI interface
» Frame Capture - Capture implementation details
* CCI Low-Level - Low-level I2C communication

e VoSPI - SPI video interface

7. License

Copyright © Daniel Kampert, 2026
This program is free software under GNU GPL v3.0.

Website: https://www.kampis-elektroecke.de

14


lepton_cci.html
lepton_capture.html
cci.html
vospi.html
https://www.kampis-elektroecke.de

	Lepton Main Driver Module
	Table of Contents
	1. Overview
	1.1. Key Features
	1.2. Supported Sensors

	2. Initialization
	2.1. Basic Initialization
	2.2. Configuration Structure

	3. API Functions
	3.1. Device Control
	3.1.1. Lepton_Init
	3.1.2. Lepton_Deinit
	3.1.3. Lepton_HardReset
	3.1.4. Lepton_EnablePowerDown

	3.2. Video Configuration
	3.2.1. Lepton_SetVideoFormat
	3.2.2. Lepton_GetVideoFormat
	3.2.3. Lepton_SetVideoSource
	3.2.4. Lepton_FreezeVideo

	3.3. Telemetry
	3.3.1. Lepton_EnableTelemetry

	3.4. Temperature Measurement
	3.4.1. Lepton_GetTemperature
	3.4.2. Lepton_GetPixelTemperature

	3.5. AGC Configuration
	3.5.1. Lepton_EnableAGC

	3.6. ROI Management
	3.6.1. Lepton_SetSpotmeterROI / Lepton_GetSpotmeterROI
	3.6.2. Lepton_GetSpotmeter
	3.6.3. Scene ROI Functions

	3.7. Scene Statistics
	3.7.1. Lepton_GetSceneStatistics

	3.8. Radiometric Functions (Lepton 3.5 only)
	3.8.1. Lepton_SetEmissivity
	3.8.2. Lepton_SetFluxLinearParameters / Lepton_GetFluxLinearParameters
	3.8.3. Lepton_SetTLinearResolution / Lepton_GetTLinearResolution

	3.9. Frame Capture
	3.9.1. Lepton_StartCapture
	3.9.2. Lepton_StopCapture

	3.10. Image Processing
	3.10.1. Lepton_Raw14ToRGB

	3.11. Utility Functions
	3.11.1. Lepton_LibVersion
	3.11.2. Lepton_GetUptime
	3.11.3. Lepton_isCapturing
	3.11.4. Lepton_GetSyncErrors
	3.11.5. Lepton_GetFrameCounter
	3.11.6. Lepton_KelvinToCelsius


	4. Error Handling
	5. Usage Example
	5.1. Complete Initialization and Capture

	6. See Also
	7. License

