
CCI Low-Level Module

1. Overview
The cci (Command and Control Interface) module implements the low-level I2C communication
protocol for the Lepton thermal sensor. It handles command transmission, status polling, and data
transfer according to the Lepton CCI specification.

1.1. Key Features
• I2C-based communication at 7-bit address 0x2A

• Command/response protocol with status polling

• Boot detection and timeout handling

Table of Contents
1. Overview . 1

1.1. Key Features. 1

2. CCI Protocol . 2

2.1. Register Map . 2

2.2. Command Execution Flow . 2

2.3. Status Register . 2

3. SDK Modules . 2

3.1. AGC Module (0x0100). 3

3.2. SYS Module (0x0200) . 3

3.3. VID Module (0x0300) . 3

3.4. OEM Module (0x0800) . 3

3.5. RAD Module (0x0E00) . 4

4. Key Functions . 4

4.1. Initialization. 4

4.2. Boot Detection . 4

4.3. Command Execution . 4

4.4. Register Access . 5

4.5. Block Transfers . 5

5. Error Handling . 5

6. Timeout Configuration . 5

7. I2C Callbacks . 6

8. Usage Example . 6

9. See Also . 7

10. License . 7

1

• Register read/write operations

• Block buffer transfers for large data

• Comprehensive error handling

2. CCI Protocol
The CCI protocol uses a master-slave I2C communication:

2.1. Register Map

Address Register Purpose

0x0002 STATUS Command status and busy flag

0x0004 COMMAND Command ID to execute

0x0006 DATA_LENGTH Data length in 16-bit words

0x0008-0x0026 DATA_0 to DATA_15 Data buffer (max 16 words)

0xF800 BLOCK_BUF_0 Large data block buffer 0

0xFC00 BLOCK_BUF_1 Large data block buffer 1

2.2. Command Execution Flow
1. Write command ID to COMMAND register

2. (Optional) Write data to DATA registers

3. Poll STATUS register until not busy

4. Check for errors in STATUS

5. (Optional) Read response from DATA registers

2.3. Status Register

Bit Meaning

15 Busy: 1 = command executing, 0 = ready

8-15 Error code (when busy = 0)

0-7 Boot status / command result

3. SDK Modules
The CCI interface is organized into SDK modules:

2

3.1. AGC Module (0x0100)
Automatic Gain Control configuration:

• Enable/disable AGC

• Set AGC policy (HEQ, Linear)

• Configure ROI

• Histogram statistics

• HEQ parameters (dampening, clip limits, scaling)

3.2. SYS Module (0x0200)
System commands:

• Ping (connectivity test)

• Read serial number

• Get uptime

• Read temperatures (FPA, AUX)

• Telemetry control

• Scene statistics

• Part number

3.3. VID Module (0x0300)
Video configuration:

• Video output format (RAW14, RGB888)

• Video source (normal, ramp, constant)

• Pseudo-color LUT

• Focus metrics

• Video freeze

• User-defined color LUT

3.4. OEM Module (0x0800)
OEM-specific features:

• Power control

• GPIO configuration

• Reboot command

• FFC (Flat Field Correction) modes

3

3.5. RAD Module (0x0E00)
Radiometry (Lepton 3.5 only):

• TLinear enable/disable

• TLinear resolution

• Spotmeter configuration

• Flux linear parameters

• Emissivity and scene parameters

4. Key Functions

4.1. Initialization

Lepton_Error_t CCI_Init(CCI_t *p_Interface);

Initialize CCI interface with I2C callbacks.

4.2. Boot Detection

Lepton_Error_t CCI_WaitForBoot(CCI_t *p_Interface, Lepton_Result_t *p_Status);

Wait for sensor boot (polls STATUS until boot complete).

4.3. Command Execution

Lepton_Error_t CCI_ExecuteCommand(
 CCI_t *p_Interface,
 uint16_t Command,
 void *p_DataIn,
 size_t DataInLength,
 void *p_DataOut,
 size_t DataOutLength,
 Lepton_Result_t *p_Status
);

Execute a CCI command with optional input/output data.

Parameters:

• Command: CCI command ID (e.g., CCI_CMD_SYS_GET_FPA_TEMP)

• p_DataIn: Input data buffer (or NULL)

4

• DataInLength: Input data size in bytes

• p_DataOut: Output data buffer (or NULL)

• DataOutLength: Output data size in bytes

• p_Status: Optional status result

4.4. Register Access

Lepton_Error_t CCI_ReadRegister(CCI_t *p_Interface, uint16_t Register, uint16_t
*p_Value);
Lepton_Error_t CCI_WriteRegister(CCI_t *p_Interface, uint16_t Register, uint16_t
Value);

Direct register read/write (16-bit values).

4.5. Block Transfers
For large data (> 32 bytes):

Lepton_Error_t CCI_WriteBlockBuffer(CCI_t *p_Interface, void *p_Data, size_t Length);
Lepton_Error_t CCI_ReadBlockBuffer(CCI_t *p_Interface, void *p_Data, size_t Length);

5. Error Handling
CCI functions return:

• LEPTON_ERR_OK: Success

• LEPTON_ERR_TIMEOUT: Command timeout

• LEPTON_ERR_FAIL: CCI error code returned

• LEPTON_ERR_INVALID_ARG: Invalid parameters

The Lepton_Result_t structure contains:

typedef struct {
 uint16_t StatusCode; // CCI status register value
 uint8_t ErrorCode; // Extracted error code (bits 8-15)
} Lepton_Result_t;

6. Timeout Configuration
CCI operations have timeouts:

5

• Boot wait: 5 seconds

• Command execution: 1 second

• Status polling: 100ms intervals

7. I2C Callbacks
The CCI module requires application-provided I2C functions:

typedef Lepton_Error_t (*CCI_I2C_Read_t)(uint8_t Address, uint16_t Register, uint8_t
*p_Data, size_t Length);
typedef Lepton_Error_t (*CCI_I2C_Write_t)(uint8_t Address, uint16_t Register, uint8_t
*p_Data, size_t Length);

Example Implementation:

Lepton_Error_t my_i2c_read(uint8_t addr, uint16_t reg, uint8_t *data, size_t len) {
 i2c_cmd_handle_t cmd = i2c_cmd_link_create();
 i2c_master_start(cmd);
 i2c_master_write_byte(cmd, (addr << 1) | I2C_MASTER_WRITE, true);
 i2c_master_write_byte(cmd, reg >> 8, true);
 i2c_master_write_byte(cmd, reg & 0xFF, true);
 i2c_master_start(cmd);
 i2c_master_write_byte(cmd, (addr << 1) | I2C_MASTER_READ, true);
 i2c_master_read(cmd, data, len, I2C_MASTER_LAST_NACK);
 i2c_master_stop(cmd);
 esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_PERIOD_MS);
 i2c_cmd_link_delete(cmd);
 return (ret == ESP_OK) ? LEPTON_ERR_OK : LEPTON_ERR_FAIL;
}

8. Usage Example

CCI_t cci_interface = {
 .I2C_Read = my_i2c_read,
 .I2C_Write = my_i2c_write,
 .Address = 0x2A
};

Lepton_Result_t status;

// Initialize
CCI_Init(&cci_interface);

// Wait for boot
CCI_WaitForBoot(&cci_interface, &status);

6

// Read FPA temperature
uint16_t fpa_temp;
CCI_GetFPATemp(&cci_interface, &fpa_temp, &status);

// Execute custom command
uint16_t data_out[2];
CCI_ExecuteCommand(&cci_interface, CCI_CMD_SYS_GET_SCENE_STATISTICS,
 NULL, 0, data_out, sizeof(data_out), &status);

9. See Also
• CCI Commands - High-level command interface

• Main Driver - Complete driver API

10. License
Copyright © Daniel Kampert, 2026 | GNU GPL v3.0

Website: https://www.kampis-elektroecke.de

7

lepton_cci.html
lepton.html
https://www.kampis-elektroecke.de

	CCI Low-Level Module
	Table of Contents
	1. Overview
	1.1. Key Features

	2. CCI Protocol
	2.1. Register Map
	2.2. Command Execution Flow
	2.3. Status Register

	3. SDK Modules
	3.1. AGC Module (0x0100)
	3.2. SYS Module (0x0200)
	3.3. VID Module (0x0300)
	3.4. OEM Module (0x0800)
	3.5. RAD Module (0x0E00)

	4. Key Functions
	4.1. Initialization
	4.2. Boot Detection
	4.3. Command Execution
	4.4. Register Access
	4.5. Block Transfers

	5. Error Handling
	6. Timeout Configuration
	7. I2C Callbacks
	8. Usage Example
	9. See Also
	10. License

